Guided desaturation of unactivated aliphatics

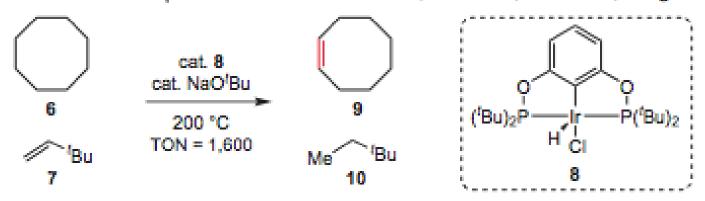
Ana-Florina Voica, Abraham Mendoza, Will R. Gutekunst, Jorge Otero Fraga and Phil S. Baran*

Atefeh Garzan @ Wipf Group Page 1 of 19 8/31/2012

Most olefin forming reaction:

- 1. Functionalization of ketones or aldehydes (aldol condensation, Wittig olefination).
- 2. Modification of other alkenes (olefin metathesis, metalcatalysed coupling reactions).
- 3. Reductive transformations of alkynes (stereoselective reduction, reductive coupling).
- 4. Synthesis by elimination reactions (from alcohols, halides).

Alkane dehydrogenation:


a O-centred radical abstraction/oxidation – Cekovic, Beckwith, Kochi

Tetrahedron 35, 2021-2026 (1979).

b Photochemical transfer hydrogenation - Breslow

J. Am. Chem. Soc. 95, 3251-3262 (1973).

c Oxidative addition/β-H elimination – Brookhart, Crabtree, Goldman, Bergman

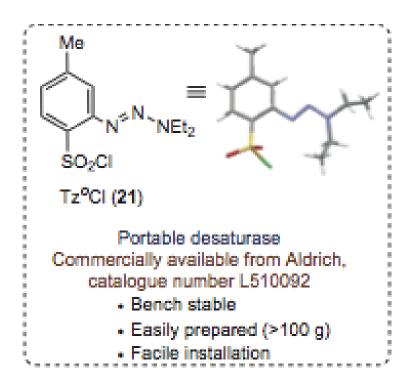
J. Am. Chem. Soc. 126, 1804-1811 (2004).

d Cyclometallation/β-H elimination – for Pd: Yu, Catellani, Boudoin; for Pt: Sames

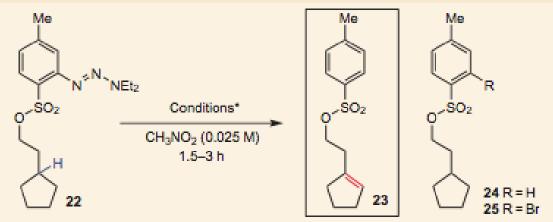
Organometallics 27, 1667-1670 (2008).

Important limitations include:

- The use of inconvenient starting materials (for example, peroxides).
- 2. Poor substrate scope.
- 3. Overoxidation of the resulting olefin.
- 4. Large substrate excesses.
- 5. Harsh reaction conditions.


a A formal desaturation via C-H oxidation: application in total synthesis

Nature 459, 824-828 (2009).


b One postulated mechanism for enzymatic desaturation

Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 611-641 (1998).

Design of a 'portable' desaturase:

Table 1 | Development of a method for guided desaturation.

Entry	Copper source	Additive (equiv.)	Acid (equiv.)	Temperature (°C)	Yield% (ratio 23:24:25) [†]
1	CuBr ₂ (5 mol%)	-	TFA (2)	80	34 (20:13:1)‡
2	CuBr ₂ (5 mol%)	-	TFA (2)	80	31 (5:1:2)
3	CuBr ₂ (5 mol%)	TEMPO (1)	TFA (2)	80	40 (6:1:1)
4	_	TEMPO (1)	TFA (2)	80	50 (4.5:1:0)
5	_	_	TFA (3)	80	12 (20:1:0)
6	_	TEMPO (1)	_	80	NR
7	-	TEMPO (1)	TFA (3)	60	68 (10:1:0) [§]
8	-	TEMPO (1)	TfOH (2)	r.t.	54 (20:1:0) (45)
9	-	AZADO (1)	TFA (3)	60	15 (20:1:0)
10	_	Ad ₂ NO* (1)	TFA (3)	60	24 (20:1:0)
	Me	Me			\wedge

Table 2 | Substrate scope for the guided desaturation reaction.

- 20 examples
- · No metal required
- Predictable dehydrogenation site
 No overoxidation observed
- · Good functional group tolerance
- · No strong oxidants required

a Desaturation of eudesmane derivative 40

b Desaturation of dihydroabietylamine derivative 42

C Desaturation of 18-β-glycyrrhetinic acid derivative 45

d Desaturation of tetrapeptide 47

a 1,7-abstraction event

b In situ trapping of the aryl radical intermediate

TEMPO-promoted desaturation from a diazonium intermediate

d Preliminary result of a TEMPO-catalysed desaturation reaction

e Proposed reaction mechanism for the guided desaturation reaction

Conclusion:

- A new chemical moiety, Tz°Cl (21), has been designed to mimic processes observed in nature and leads to desaturated aliphatics.
- 2. The chemistry performed by this directing group is centred on the high reactivity of an aryl radical masked as an aryl triazene.
- 3. The desaturation reaction is applicable on simple substrates derived from saturated alcohols and amines, to give olefin products in a predictable fashion without any overoxidation.
- 4. Some of the drawbacks of this method are the modest product yields, the formation of minor amounts of inseparable reduction products and the occasional difficulties in purification.